Mathieu functions for purely imaginary parameters

نویسندگان

  • C. H. Ziener
  • M. Rückl
  • T. Kampf
  • W. R. Bauer
  • H. P. Schlemmer
چکیده

For theMathieu differential equation y(x)+[a−2q cos(x)]y(x) = 0with purely imaginary parameter q = is, the characteristic value a exhibits branching points. We analyze the properties of the Mathieu functions and their Fourier coefficients in the vicinity of the branching points. Symmetry relations for the Mathieu functions as well as the Fourier coefficients behind a branching point are given. A numerical method to compute Mathieu functions for all values of the parameter s is presented. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the small real and purely imaginary zeros of Bessel and related functions

We give two distinct approaches to finding bounds, as functions of the order ν, for the smallest real or purely imaginary zero of Bessel and some related functions. One approach is based on an old method due to Euler, Rayleigh, and others for evaluating the real zeros of the Bessel function Jν(x) when ν > −1. Here, among other things, we extend this method to get bounds for the two purely imagi...

متن کامل

On Schottky Groups Arising from the Hypergeometric Equation with Imaginary Exponents

In an article by Sasaki and Yoshida (2000), we encountered Schottky groups of genus 2 as monodromy groups of the hypergeometric equation with purely imaginary exponents. In this paper we study automorphic functions for these Schottky groups, and give a conjectural infinite product formula for the elliptic modular function λ.

متن کامل

Asymptotic expansions of oscillatory integrals with complex phase

We consider saddle point integrals in d variables whose phase functions are neither real nor purely imaginary. Results analogous to those for Laplace (real phase) and Fourier (imaginary phase) integrals hold whenever the phase function is analytic and nondegenerate. These results generalize what is well known for integrals of Laplace and Fourier type. The proofs are via contour shifting in comp...

متن کامل

The Kummer confluent hypergeometric function and some of its applications in the theory of azimuthally magnetized circular ferrite waveguides

Examples of the application of the confluent hypergeometric functions in miscellaneous areas of the theoretical physics are presented. It is suggested these functions to be utilized as a universal means for solution of a large number of problems, leading to: cylindrical, incomplete gamma, Coulomb wave, Airy, Kelvin, Bateman, Weber’s parabolic cylinder, logarithmic-integral and exponential integ...

متن کامل

The integrals in Gradshteyn and Ryzhik . Part 9 : Combinations of logarithms , rational and trigonometric functions

The table of Gradshteyn and Ryzhik contains many integrals with integrands of the form R1(x) (lnR2(x)) m, where R1 and R2 are rational functions. In this paper we describe some examples where the logarithm appears to a single power, that is m = 1, and the poles of R1 are either real or purely imaginary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 236  شماره 

صفحات  -

تاریخ انتشار 2012